منابع مشابه
Glutamate gated spiking Neuron Model
BACKGROUND Biological neuron models mainly analyze the behavior of neural networks. Neurons are described in terms of firing rates viz an analog signal. PURPOSE The Izhikevich neuron model is an efficient, powerful model of spiking neuron. This model is a reduction of Hodgkin-Huxley model to a two variable system and is capable of producing rich firing patterns for many biological neurons. ...
متن کاملSpiking Neuron Model for Temporal Sequence Recognition
A biologically inspired neuronal network that stores and recognizes temporal sequences of symbols is described. Each symbol is represented by excitatory input to distinct groups of neurons (symbol pools). Unambiguous storage of multiple sequences with common subsequences is ensured by partitioning each symbol pool into subpools that respond only when the current symbol has been preceded by a pa...
متن کاملA functional spiking neuron hardware oriented model
In this paper we present a functional model of spiking neuron intended for hardware implementation. The model allows the design of speedand/or area-optimized architectures. Some features of biological spiking neurons are abstracted, while preserving the functionality of the network, in order to define an architecture easily implementable in hardware, mainly in field programmable gate arrays (FP...
متن کاملInvestigation of a chaotic spiking neuron model
Chaos provides many interesting properties that can be used to achieve computational tasks. Such properties are sensitivity to initial conditions, space filling, control and synchronization. Chaotic neural models have been devised to exploit such properties. In this paper, a chaotic spiking neuron model is investigated experimentally. This investigation is performed to understand the dynamic be...
متن کاملA spiking neuron model: applications and learning
This paper presents a biologically inspired, hardware-realisable spiking neuron model, which we call the Temporal Noisy-Leaky Integrator (TNLI). The dynamic applications of the model as well as its applications in Computational Neuroscience are demonstrated and a learning algorithm based on postsynaptic delays is proposed. The TNLI incorporates temporal dynamics at the neuron level by modelling...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Neurosciences
سال: 2014
ISSN: 0972-7531,0976-3260
DOI: 10.5214/ans.0972.7531.210105